RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.SC. FIRST SEMESTER EXAMINATION, DECEMBER 2011 FIRST YEAR

CHEMISTRY (Honours)

Time: 11am – 1pm Paper: I Full Marks: 50

[Use separate answer-books for each group]

Group-A

Unit – I

Answer **any one** from the following

: 15/12/2011

Date

Define compressibility factor (z) of a gas. The virial equation of state in terms of P is 1. given by $z = 1 + \frac{1}{RT} \left(b - \frac{a}{RT} \right) P + \frac{a}{(RT)^3} \left(2b - \frac{a}{RT} \right) P^2 + \cdots$ Find the expression for 3 b) A gas obeys the equation of state P(V-b) = RT. Would it be possible to liquefy the gas? Would it have critical temperature? Explain. 2 For N₂ molecules, the volume correction parameter is found as 39.1 cc/mole. Assuming the gas as Vander Waals real gas, find out its molecular diameter. 3 The potential energy of attraction between neutral molecules is given by $U = A/r^n$. Remark on the sign of A and its dependence on molecular property. Comment on the value of n'. 3 (i) For CH₄ at 400K, what value of \overline{C}_{p} is predicted? 2 e) (ii) Comment on the \overline{C}_p at very low temperature. Why is this so? 2 Probability density of finding gas molecule in one dimension is $P(u_x) = Ae^{-\lambda u_x^2}$, where A is 2. normalization constant and u_x is one dimensional velocity. Give justification of the appearance of the square term. 1 (ii) Find out the value of A. 2 Stating with the Maxwell Speed distribution in three dimensions derive the expression of the number of molecules with translational kinetic energy greater than \in , $(\in \gg kT)$. 4 How many collisions does a single H₂ molecule make per second when the temperature is 25°C and the pressure is 1 atm. (Molecular diameter of $H_2 = 0.292$ nm) 3 Two gas constants of Vander Waals equation explains both the rise and fall of experimental d) compressibility factors. Explain. 2 2 (ii) Explain the continuity of states using P–V isothermal curves. The most probable velocity of the molecules moving in one direction, v_x is zero. Explain. 1

Unit – II

Answer **any one** from the following

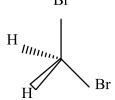
3. a) Heat and work are equivalent ways of changing a system's internal energy. Explain from molecular point of view.

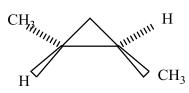
- b) " $\Delta H = \int_{T_i}^{T_f} Cpdt$ is valid for any process involving any system". Justify or criticize.
- c) Derive the relation $c_p c_v = \left[P + \left(\frac{\partial u}{\partial v} \right)_T \right] \left(\frac{\partial v}{\partial T} \right)_p$.

Hence find the value of $c_p - c_v$ for a gas obeying P(V - b) = RT. $\left[\left(\frac{\partial u}{\partial v} \right)_T = 0 \text{ for the gas} \right]$.

d) The constant pressure heat capacity of a sample of a perfect gas was fond to vary with temperature according to the expression $C_P/JK^{-1} = 20.17 + 0.3665T$.

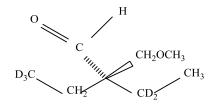
Calculate q, w, $\triangle u$ and $\triangle H$, when the temperature is raised from 25°C to 200°C at constant pressure.

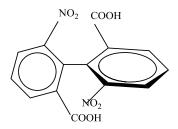

- 4. a) A gas enclosed in a cylinder with a diabatic and non-rigid wall is an isolated system. Justify or criticise.
 - b) Consider the combustion of propane gas. The equation is $C_3H_8(g)+5O_2(g) \rightarrow 3CO_2(g)+4H_2O(l)$. Measurement at 298K gives 4U = -2195 KJ mol⁻¹ of propane. What do you expect about ΔH at same temperature in constant pressure combustion?
 - c) $1 \text{ mol} \cdot H_2O \text{ (liq, 100°U, 1 atm)} \rightarrow 1 \text{ mol } H_2O \text{ (vap, 100°C, 1 atm)}$ Calculate Q, W & ΔV for the process. Assume ideal behaviour of the vapour. Given: Enthalpy of vaporization = 43.7 KJ mol^{-1} .
 - d) One mole of an ideal monatonic gas initially at STP is compressed reversibly to 2 atm pressure along the path: PT = constant.
 - (i) Calculate the final T and V for the gas.
 - (ii) Sketch qualitatively the appearance of path on a P vs V plot.
 - (iii) Calculate ΔH for the process.


Group – E Unit–I

Answer any one from the following

5. a) Find the symmetry elements of the following:


(i) Br



- b) Write down one each of Fischer and Newman projection formulae of (2S, 3S)-3-bromobutan-2-ol.
- c) Give R/S notations of the stereogenic centre/axis of the following:

(i) (ii)

2

3

3

2

2

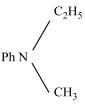
3

1

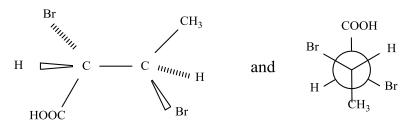
1

1

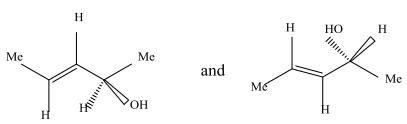
2


2

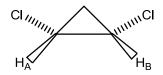
2


- d) C_3 atom of meso-2,3,4-trihydroxyglutaric acid is a pseudoasymmetric centre comment. Examine the stereogenicity and chirotopicity of C_3 .
- e) Draw the energy profile of conformations obtained by rotation around C₂–C₃ bond of mesobutane-2,3-diol. Indicate the dihedral angle of the conformers. Label the energy maxima and minima of the curve with appropriate conformations.
- f) (+)Mandelic acid [PhCH(OH)COOH] undergoes racemisation when boiled in alkali, but (+) atrolactic acid [PhC(CH₃)(OH)COOH] does not explain.
- 6. a) Give R/S notations of configurations of the following:

(i) (ii) $\begin{array}{c} CN \\ CI \\ CH=CH2 \end{array}$ (ii) CC = C = C


- b) Explain whether the following compounds are resolvable. Comment on their chirality.
 - (i) $CH_2 = C = C(CH_3)_2$
 - (ii) $CH_3CH = C = CHCH_3$
 - (iii)

- c) Give the stereochemical relationship between the following pairs.
 - (i)

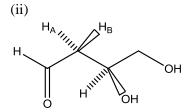


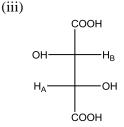
(ii)

- d) A pure enantiomer of a certain chiral compound has $\left[\alpha\right]_D^{25} = +55^\circ$. A mixture of two enantiomers of the same compound shows the $\left[\alpha\right]_D^{25}$ as -11° . Calculate the percentage composion of the enantiomers in the mixture.
- e) Identify the labelled H atoms as homotopic, enantiotopic or diastereotopic in the following:

(i)

2 2


3


3

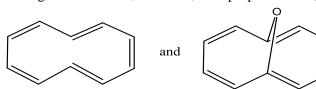
4

2

3

f) How many steroisomers are possible for 2-methylpent-3-enoic acid. Draw their structures.

Unit-II


Answer any one from the following

7. a) Which carbocation of the following pair is more stable and why?

$$CH_3OCH = CH\overset{\dagger}{C}H_2$$
 and $CH_3OC = CH_2$
 $+ CH_2$

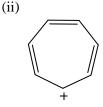
b) Draw the orbital picture of $CH_3CH = C = O$ indicating the state of hybridisation of C atoms.

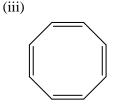
c) Of the following two structures, ascertain, with proper reasons, the structure with greater stability.

d) Calculate the approximate values of dipolemoments of (i) *p*-chloronitrobenzene and (ii) *p*-nitrotoluene from the following data.

$$\mu_{toluene} = 0.43D, \ \mu_{nitrobenzene} = 4.21D, \mu_{chlorobenzene} = 1.70D$$

8. a) Calculate the resonance energy of benzene from the following heats of hydrogenation (ΔH) values.


Cyclohexene + H_2 = Cyclohexane, ΔH = -30 Kcal mol⁻¹


Benzene + $3H_2$ = Cyclohexane, $\Delta H = -54$ Kcal mol⁻¹

- b) C-H bonds in fluoromethane are shorter than in methane explain.
- c) Draw the π MOs of allyl carbocation and allyl carbonion. Explain on the basis of MO pictures, (i) the electron enriched C atoms in allyl carbanion and (ii) the electron deficient C atoms in allyl carbocation.
- d) State, with reasons, whether the following are aromatic, nonaromatic or antiaromatic.

(i)

2

3

2

2

3

2

2

3

3
